- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Yi-Chun (3)
-
Chen, Chia-Hao (1)
-
Chen, Wei-Han (1)
-
Chen, Yuang (1)
-
Chu, Ying-Hao (1)
-
Dai, Minyi (1)
-
Hsieh, Shang-Hsien (1)
-
Hsu, Ju-Hung (1)
-
Hu, Jia-Mian (1)
-
Huang, Rong (1)
-
Kuo, Yen-Chien (1)
-
Lee, Han Yong (1)
-
Liu, Po-Liang (1)
-
Mueller-Frank, Manuel (1)
-
Pai, Mallesh M. (1)
-
Park, Chanung (1)
-
Park, Hye Lin (1)
-
Shao, Pao-Wen (1)
-
Tang, Yi-Cheng (1)
-
Wu, Yi-Xian (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Self-assembled systems have recently attracted extensive attention because they can display a wide range of phase morphologies in nanocomposites, providing a new arena to explore novel phenomena. Among these morphologies, a bicontinuous structure is highly desirable based on its high interface-to-volume ratio and 3D interconnectivity. A bicontinuous nickel oxide (NiO) and tin dioxide (SnO 2 ) heteroepitaxial nanocomposite is revealed here. By controlling their concentration, we fabricated tuneable self-assembled nanostructures from pillars to bicontinuous structures, as evidenced by TEM-energy-dispersive X-ray spectroscopy with a tortuous compositional distribution. The experimentally observed growth modes are consistent with predictions by first-principles calculations. Phase-field simulations are performed to understand 3D microstructure formation and extract key thermodynamic parameters for predicting microstructure morphologies in SnO 2 :NiO nanocomposites of other concentrations. Furthermore, we demonstrate significantly enhanced photovoltaic properties in a bicontinuous SnO 2 :NiO nanocomposite macroscopically and microscopically. This research shows a pathway to developing innovative solar cell and photodetector devices based on self-assembled oxides.more » « less
-
Chen, Yi-Chun; Mueller-Frank, Manuel; Pai, Mallesh M. (, Journal of Economic Theory)
-
Lee, Han Yong; Park, Hye Lin; Park, Chanung; Chen, Yi-Chun; Yoon, Gyeong Mee (, Proceedings of the National Academy of Sciences)Ethylene influences plant growth, development, and stress responses via crosstalk with other phytohormones; however, the underlying molecular mechanisms are still unclear. Here, we describe a mechanistic link between the brassinosteroid (BR) and ethylene biosynthesis, which regulates cellular protein homeostasis and stress responses. We demonstrate that as a scaffold, 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS), a rate-limiting enzyme in ethylene biosynthesis, promote the interaction between Seven-in-Absentia of Arabidopsis (SINAT), a RING-domain containing E3 ligase involved in stress response, and ETHYLENE OVERPRODUCER 1 (ETO1) and ETO1-like (EOL) proteins, the E3 ligase adaptors that target a subset of ACS isoforms. Each E3 ligase promotes the degradation of the other, and this reciprocally antagonistic interaction affects the protein stability of ACS. Furthermore, 14–3-3, a phosphoprotein-binding protein, interacts with SINAT in a BR-dependent manner, thus activating reciprocal degradation. Disrupted reciprocal degradation between the E3 ligases compromises the survival of plants in carbon-deficient conditions. Our study reveals a mechanism by which plants respond to stress by modulating the homeostasis of ACS and its cognate E3 ligases.more » « less
An official website of the United States government
